Cytochrome oxidase (a3) heme and copper observed by low-temperature Fourier transform infrared spectroscopy of the CO complex.

نویسندگان

  • J O Alben
  • P P Moh
  • F G Fiamingo
  • R A Altschuld
چکیده

Carbon monoxide bound to iron or copper in substrate-reduced mitochondrial cytochrome c oxidase (ferrocytochrome c:oxygen oxidoreductase, EC 1.9.3.1) from beef heart has been used to explore the structural interaction of the a3 heme-copper pocket at 15 K and 80 K in the dark and in the presence of visible light. The vibrational absorptions of CO measured by a Fourier transform infrared interferometer occur in the dark at 1963 cm-1, with small absorptions near 1952 cm-1, and are due to a3 heme--CO complexes. These disappear in strong visible light and are replaced by a major absorption at 2062 cm-1 and a minor one at 2043 cm-1 due to Cu--CO. Relaxation in the dark is rapid and quantitative at 210 K, but becomes negligible below 140 K. The multiple absorptions indicate structural heterogeneity of cytochrome oxidase in mitochondria. The Cu--CO absorptions (vCO) are similar to those in hemocyanin--CO complexes from molluscs (vCO - 2062 cm-1) and crustaceans (vCO = 2043 cm-1). The 2062 cm-1 Cu--CO absorption of cytochrome oxidase is split into two bands at 15 K. Analysis of spectral data suggest the presence of a very nonpolar heme--Cu pocket in which the heme-CO complex is highly ordered, but in which the Cu--CO complex is much more flexible, especially above 80 K. A function for these structures in oxygen reduction is proposed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probing the Q-proton pathway of ba3-cytochrome c oxidase by time-resolved Fourier transform infrared spectroscopy.

In cytochrome c oxidase, the terminal respiratory enzyme, electron transfers are strongly coupled to proton movements within the enzyme. Two proton pathways (K and D) containing water molecules and hydrophobic amino acids have been identified and suggested to be involved in the proton translocation from the mitochondrial matrix or the bacterial cytoplasm into the active site. In addition to the...

متن کامل

Fourier transform infrared (FTIR) and step-scan time-resolved FTIR spectroscopies reveal a unique active site in cytochrome caa3 oxidase from Thermus thermophilus.

Fourier transform infrared (FTIR) and step-scan time-resolved FTIR difference spectra are reported for the [carbonmonoxy]cytochrome caa(3) from Thermus thermophilus. A major C-O mode of heme a(3) at 1958 cm(-1) and two minor modes at 1967 and 1975 cm(-1) (7:1:1) have been identified at room temperature and remained unchanged in H(2)O/D(2)O exchange. The observed C-O frequencies are 10 cm(-1) hi...

متن کامل

Dynamic interactions of CO with a3Fe and CuB in cytochrome c oxidase in beef heart mitochondria studied by Fourier transform infrared spectroscopy at low temperatures.

Carbon monoxide bound to cytochrome c oxidase has been observed by Fourier transform infrared spectroscopy between 10 K and 280 K in the dark and during and after continuous photolysis. CO bound to a3Fe absorbs near 1963 cm-1, with minor bands at lower frequencies. Photolysis at low temperatures transfers CO to CuB, with the major component near 2062 cm-1 and a minor one near 2043 cm-1. Vibrati...

متن کامل

Spectroscopic and kinetic investigation of the fully reduced and mixed valence states of ba3-cytochrome c oxidase from Thermus thermophilus: a Fourier transform infrared (FTIR) and time-resolved step-scan FTIR study.

The complete understanding of a molecular mechanism of action requires the thermodynamic and kinetic characterization of different states and intermediates. Cytochrome c oxidase reduces O(2) to H(2)O, a reaction coupled to proton translocation across the membrane. Therefore, it is necessary to undertake a thorough characterization of the reduced form of the enzyme and the determination of the e...

متن کامل

Structure of cytochrome a3-Cua3 couple in cytochrome c oxidase as revealed by nitric oxide binding studies.

The addition of NO to oxidized cytochrome c oxidase (ferrocytochrome c:oxygen oxidoreductase, EC 1.9.3.1) causes the appearance of a high-spin heme electron paramagnetic resonance (EPR) signal due to cytochrome a3. This suggests that NO coordinates to Cu+2a3 and breaks the antiferromagnetic couple by forming a cytochrome a+33-Cu+2a3-NO complex. The intensity of the high-spin cytochrome a3 signa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 78 1  شماره 

صفحات  -

تاریخ انتشار 1981